Хранилища данных - статьи




Заключение


Интеграция трех самостоятельных направлений, относящихся к методам генерации нового знания и использования этого знания при управлении поведением объектов, позволяет получить новый импульс в развитии интеллектуальных средств управления. В работе показаны возможные выгоды от такой интеграции, наибольший интерес из которых представляет, по-видимому, возможность накапливания знаний о возможном поведении в случае возникновения каких-либо ситуаций и постоянно растущая вероятность верного прогноза поведения в ситуациях, ранее не встречавшихся или ранее не явно не распознававшихся.

Особенным достоинством метода является возможность накопления знаний о ситуациях (прецедентах) во внешней, по отношению к объектам, базе данных и использования этих знаний другими объектами, подключенными к той же базе.

Метод важен и интересен тем, что его можно применять по отношению к реальным биологическим объектам, в том числе - при изучении поведения человека. Адаптация поведения любого живого существа, в том числе, человека, в окружающей среде, с момента рождения происходит на основе прецедентов. В начальной стадии жизнедеятельности один из основных способов накопления знаний (пополнения базы прецедентов) - это игра. Когда собственная база прецедентов мала, собственный опыт проб и ошибок оказывается незаменимым, особенно он важен, если плата за ошибки относительно мала. Одновременно база прецедентов начинает пополняться чужим опытом (например, с помощью наблюдения), иными словами, происходит процесс передачи знаний от одной системы управления в другую.

Развиваемый подход не является панацеей и не может быть абсолютизирован. В определенных ситуациях, связанных управлением и обучением объектов с хорошо формализуемым поведением, применение "классических" методов будет, несомненно, более выигрышным. Однако метод интеллектуального адаптивного управления с предварительной и перманентной классификацией новых ситуаций позволяет работать с объектами, поведение которых слабо изучено или (в начальный момент) совсем неизвестно, расширяя сферу применения всех трех методов: адаптивного управления, добычи данных и вывода на основе прецедентов.




Содержание  Назад  Вперед